Ядро и процессор в чем разница
Перейти к содержимому

Ядро и процессор в чем разница

  • автор:

Различия между физическими ядрами и логическими процессорами

core cpu logo

Настройка серверов windows и linux

Добрый день! Уважаемые подписчики и просто гости IT блога pyatilistnik.org. В прошлый раз мы с вами разобрали пошаговую установку Windows 11. В сегодняшнем посте мы поговорим про различия между физическими ядрами и логическими процессорами, так как у многих людей есть в этом путаница и закономерные вопросы, так как есть физические процессоры, ядра, потоки, переключатели контекста, логические процессоры, не говоря уже обо всех других аспектах, таких как кеш, TDP, тактовая частота.

Понимание разницы между физическими ядрами и логическими процессорами

Так в чем же разница между физическими ядрами и логическими процессорами? Что ж, как следует из названия, физические ядра — это просто физические единицы на процессоре. Принимая во внимание, что логические процессоры являются программной абстракцией.

Логические процессоры также связаны с потоками. Они поддерживаются технологией Hyper-Threading, встроенной в некоторые процессоры Intel (Hyper Transport на AMD). При включенной гиперпоточности вы фактически получаете два потока на ядро. Таким образом, если у вас есть 6-ядерный процессор, такой как процессор Intel Core i7-8750H, с включенной гиперпоточностью, вы, по сути, получаете 12 потоков, работающих одновременно. Поэтому можно сказать, что у вас 12 логических ядер.

логические ядра — это количество физических ядер, умноженное на количество потоков

cpu в PowerEdge R740

Итак, давайте посмотрим, что означает каждый из этих терминов в отдельности.

Физические ядра против логических процессоров

Я часто встречал миф и заблуждение, что якобы логические процессоры увеличивают количество физических ядер, запомните это бред. Логический процессор НЕ увеличивает количество имеющихся у вас физических ядер. Логические процессоры — это всего лишь способ повысить эффективность ваших нынешних ядер. Они не увеличивают ни их количество, ни скорость, с которой они обрабатывают информацию.

Запомните следующее: Большее количество физических ядер ВСЕГДА лучше, чем большее количество логических ядер

У вас может возникнуть соблазн купить процессор с 2 физическими ядрами и 2 дополнительными потоками, что в сумме даст вам 4 логических процессора. Однако это не то же самое, что иметь 4 физических ядра.

Другими словами, двухъядерный процессор с поддержкой гиперпоточности менее мощный, чем четырехъядерный процессор без поддержки гиперпоточности.

Что Такое Ядро?

Ядро — это физический объект на процессоре. До того, как появились ядра, никогда не было беспокойства о том, сколько ядер у процессора, а сколько нет. Тогда у каждого процессора был один набор компонентов, таких как ALU, регистры, кеш и т. д. В настоящее время все стало довольно сложно. Почти все процессоры имеют как минимум два ядра. Каждое из ядер имеет отдельное ALU, регистры и кэш. Схематично, это выглядит вот так.

Схема структуры процессора

На этом изображении хорошо представлена ​​архитектура процессора. Как видите, этот процессор имеет четыре ядра, каждое из которых имеет собственный кэш. Внутри у каждого будет свой набор компонентов и схем.

Каждое ядро ​​может иметь скорость от базовой скорости 1 GHz до базовой скорости 3 GHz. Например, процессоры Intel Celeron имеют базовую частоту 1 GHz на ядро. С другой стороны, процессор Intel Core i7 может иметь базовую тактовую частоту около 3,5 GHz на ядро ​​и частоту Turbo 4,90 GHz на ядро.

Turbo Frequency срабатывает, когда вы выполняете ресурсоемкие задачи, такие как игры. Однако, когда процессор переходит в обычное состояние или при работе с нетребовательными задачами, такими как обработка текстов, он возвращается к базовой частоте. Это делается для уменьшения выделяемого тепла и потребляемой мощности.

Для чего придумали ядра?

Использование нескольких процессоров имело свои недостатки, потому что между каждым процессором была внешняя шина, поэтому скорость компьютера ограничивалась скоростью шины. Лучшим способом было включить несколько секций Core внутри одного чипа или кристалла. В этом случае чип все еще был похож на один ЦП с подключением питания, монтажом, радиатором и передней шиной, но имел несколько ядер. Это привело к появлению многоядерных процессоров, которые позволили достичь более высоких скоростей вычислений.

Еще одним важным ограничением сверхмощного процессора с одним процессором было тепловыделение и проблема с переключением контекста, основная идея заключается в том, что один ЦП выделял много тепла, потреблял гораздо больше энергии и страдал от низкой эффективности многозадачности.

Подкомпоненты Центрального Процессора

Выше я упомянул компоненты ЦП и его ядер, давайте я немного подробнее расскажу, о них.

  1. ALU (Arithmetic Logic Unit — Арифметико-Логическое Устройство) — Это компонент ЦП, который выполняет математические, логические операции или операции принятия решений. Вы можете рассматривать АЛУ как самое сердце.
  2. FPU (Floating Point Unit — Модуль С Плавающей Запятой) — Это вспомогательный компонент ALU, который выполняет математические операции над числами с плавающей запятой.
  3. Регистры — Это компоненты хранения внутри ЦП, где данные и инструкции хранятся во время процесса выполнения. Регистры также хранят различные состояния, необходимые процессу выполнения.
  4. Блок Управления (Control Unit) — Блок управления подобен оркестратору, который контролирует различные шаги, происходящие во время выполнения инструкций. Вы можете думать об этом как, о менеджере, который на самом деле заставляет все это работать внутри процессора.
  5. Кэш — Современные процессоры также содержат кэш. Это дополнительная память внутри ЦП, которая используется для хранения инструкций и данных после выборки из ОЗУ. Кэш заполняется инструкциями и данными, которые считаются наиболее важными для предстоящего выполнения в ЦП. Это устраняет время выборки из ОЗУ, поскольку инструкции передаются в ЦП из кэша, который уже находится внутри ЦП. В свою очередь, это обеспечивает повышение общей производительности компьютера.
  6. Фронтальная Шина (Front-Side-Bus) — Как вы видели, инструкции и данные перемещаются в ЦП и из него. Первоначально они находятся в ОЗУ и передаются в ЦП. В ЦП инструкции обрабатываются, а результат передается в ОЗУ. Передняя шина обеспечивает интерфейс или шлюз для этого потока информации.

Фронтальная Шина

Как работает процессор или ядро?

Ответ на вопрос «что такое ядро ​​в компьютере» не будет полностью понят, если вы не понимаете, как работает ядро ​​ЦП. Конечно, существует целая инженерная степень, основанная на этой концепции, поэтому подробное рассмотрение выходит за рамки этой статьи. Давайте посмотрим на то, что происходит с очень высокого уровня. Как упоминалось ранее, компьютерная программа представляет собой набор инструкций, которые выполняют задачи по запуску операционной системы и других приложений на компьютере.

Инструкции хранятся в ОЗУ, и каждая инструкция хранится по определенному адресу памяти внутри ОЗУ. Инструкции считываются ЦП, выполняются, а результат сохраняется в ОЗУ. Каждое ядро ​​в ЦП выполняет четыре основные функции в процессе выполнения инструкций:

Как работает процессор или ядро

  1. Получить (Fetch ) — Инструкции извлекаются ЦП из ОЗУ.
  2. Расшифровать (Decode) — Инструкции написаны на языке ассемблера, которые декодируются в двоичные слова (единицы и нули), потому что выполнение инструкций осуществляется как бинарные операции.
  3. Выполнить (Execute) — Декодированные инструкции выполняются в ЦП.
  4. Обратная Запись —

Результат выполнения инструкций сохраняется в оперативной памяти. Вместе вышеуказанные 4 функции, происходящие в одной и той же последовательности, называются командным циклом. Во время выполнения компьютерных программ циклы инструкций повторяются для каждой инструкции в программе. Каждое ядро ​​может обрабатывать цикл выборки и выполнения. Следовательно, чем больше у вас ядер, тем больше циклов команд может выполнить ЦП.

Зачем Так Много Ядер Вместо Одного Мощного Одноядерного Процессора?

Обычно так было до введения ядер. Например, Pentium II, флагманский процессор 1997 года, имел одно ядро. Он значительно улучшил тактовую частоту по сравнению с Pentium I. Точно так же Pentium III, флагманский процессор 1999 года, улучшил тактовую частоту Pentium II. Так зачем вводить больше ядер?

  • Высокая Температура — В конце концов улучшение тактовой частоты достигло физического ограничения. Они просто не могли охлаждаться достаточно эффективно, чтобы поддерживать точную производительность. Кроме того, они просто будут потреблять много энергии, чтобы работать. Это породило ядра. Идея здесь заключалась в том, что два ядра, работающие на более медленных скоростях, будут потреблять меньше энергии и выделять меньше тепла по сравнению с одним ядром, работающим на сверхвысокой скорости.
  • Многозадачность — Помимо проблем с нагревом, еще одной проблемой одноядерного процессора было отсутствие многозадачности. Есть такая штука, как Context Switch Overhead. Переключение контекста происходит, когда ЦП должен переключиться с одной задачи на другую. Поэтому, если вы печатаете что-то в Microsoft Word и вдруг переключаетесь на свой интернет-браузер, процессор должен переключиться на совершенно другой процесс. Это ухудшает производительность.

Следовательно, с точки зрения эффективности одноядерный процессор должен быть чрезвычайно быстрым и энергоемким, чтобы соответствовать производительности многоядерного процессора, работающего на более низкой тактовой частоте. По сути, он должен иметь возможность компенсировать накладные расходы на переключение контекста. Простейшие многоядерные процессоры могут обрабатывать столько потоков (процессов), сколько у них ядер.

  • Потоки (Threads) — Здесь стоит определить потоки. Это довольно простая концепция, но необходимая для понимания того, что такое логические процессоры. Потоки (процессы) — это в основном набор данных, доставляемых определенной программой процессору. Для пояснения рассмотрим поток как единую программу, работающую на компьютере, такую ​​как Skype или Microsoft Word. Одноядерный процессор может одновременно обрабатывать только один поток. Таким образом, если вы переключитесь с потока Skype на поток Microsoft Word на одном ядре процессора, вы понесете штраф за переключение контекста.

Чтобы переключаться с одного потока на другой, одноядерный процессор должен быть чрезвычайно быстрым, чтобы обеспечить плавный переход. Никто не хочет, чтобы их компьютер тормозил. Таким образом, чтобы выполнить этот плавный переход, потребуется много энергии, чтобы компенсировать накладные расходы, вызванные переключением контекста. Это снова генерирует тепло. Однако многоядерные процессоры имеют несколько потоков. Каждое ядро ​​может обрабатывать отдельный набор данных из другой программы. Таким образом, в случае, когда у вас есть два ядра и две программы, работающие одновременно, каждое ядро ​​будет обрабатывать один поток отдельно. Поэтому переход между ними будет очень плавным.

Не говоря уже о том, что процессор будет работать прохладно и в то же время, потому что ядрам не придется беспокоиться о переключении, т.е. об удалении текущего потока и загрузке ресурсов следующего потока при переключении. Поэтому наличие нескольких ядер необходимо для многозадачности. Чем больше у вас потоков, тем больше одновременных задач вы можете выполнять.

Как правило, количество потоков = количеству ядер. ЕСЛИ ТОЛЬКО ваш процессор не поддерживает Hyper-Threading, в этом случае количество потоков > количество ядер

  • Два сокета — то есть два физических процессора
  • Ядра — 12 физических ядер
  • 24 логических процесса

Диспетчер задач

Логические Процессоры и Hyper-Threading

Теперь, когда у вас есть общее представление о том, что такое ядро ​​и поток, пришло время поговорить о том, что такое логические процессоры и каково их отношение к Hyper-Threading.

Логический процессор — это абстрактный процессор, созданный полностью из программного обеспечения. Однако операционная система ПРИНИМАЕТ это как отдельный физический процессор. По сути, если у вас есть процессор с включенной технологией Hyper-Threading, количество логических процессоров будет в два раза больше, чем физических ядер. В итоге у вас получается два потока на ядро. Обратите внимание, что не все процессоры Intel имеют функцию Hyper-Threading.

Проведем анатомическую аналогию, ваш «рот», который ест «еду» «двумя руками». Рот здесь представляет собой «ядро», а еда — «процесс/задачу». Если бы ваш рот был одноядерным процессором без включенной гиперпоточности, то то, как вы едите, выглядело бы примерно так:

Возьмите еду одной рукой и положите ее в рот
ПОДОЖДИТЕ, пока ее не разжевали
Убедитесь, что еда проглочена

Если бы ваш рот был одноядерным с включенной гиперпоточностью, то то, как вы едите, выглядело бы примерно так:

Возьмите еду одной рукой и положите ее в рот
Когда вы собираетесь закончить жевать, поднесите еду второй рукой ко рту.
Одновременно используйте первую руку, чтобы еще схватить еды.
И процесс продолжается

Следовательно, гиперпоточность или логические процессоры по существу планируют задачи на ядре. Это делает обработку задачи более эффективной. Это не обязательно делает ядро ​​быстрее, оно просто делает его более эффективным. Это, безусловно, НЕ удваивает количество ядер, которые у вас есть.

Всегда Ли Помогает Гиперпоточность?

Гиперпоточность не может помочь с однопоточными рабочими нагрузками. На самом деле, даже несколько ФИЗИЧЕСКИХ ядер не смогут помочь вам с однопоточными рабочими нагрузками. Например, старые игры печально известны тем, что используют только одно ядро ​​и один поток. Таким образом, гиперпоточность не будет иметь большого значения. Однако новые игры становятся все более и более многопоточными по своей природе.

С другой стороны, Hyper-Threading может творить чудеса с многопоточными рабочими нагрузками, такими как обработка изображений или рендеринг анимации. Если вы профессиональный редактор или дизайнер, то вам абсолютно необходимо использовать как можно больше физических ядер и убедиться, что он поддерживает технологию Hyper-threading, чтобы получить много логических процессоров.

Тактовая частота, тепловыделение и ядра

Компьютер является цифровым устройством. Работает в двоичных единицах и нулях. Эти единицы и нули представлены импульсами электрического напряжения, которые имеют чрезвычайно короткую продолжительность, обычно порядка 1–2 ГГц (гигагерц) или от 1 до 2 миллиардов импульсов в секунду (может достигать гораздо больших величин). Это также известно как тактовая частота. Чем больше число импульсов в секунду, тем больше тактовая частота и тем быстрее обработка. Другими словами, очень быстрые процессоры имеют высокую тактовую частоту.

Можно подумать, что для того, чтобы продолжать увеличивать скорость компьютеров, вы просто продолжаете увеличивать тактовую частоту, но это не так после определенного предела. Напомним, что один мощный процессор может выделять много тепла. Следовательно, ЦП разделен на ядра. Каждое ядро ​​имеет свою тактовую частоту. Итак, если вы видите четырехъядерный процессор с тактовой частотой 3,0 ГГц. В основном это означает, что КАЖДОЕ ЯДРО ЦП имеет тактовую частоту 3,0 ГГц.

Хотя одна статья не может полностью раскрыть эту очень сложную концепцию, я рекомендуем вам читать дальнейшие статьи. С вами был Иван Сёмин, автор и создатель IT портала Pyatilistnik.org.

Популярные Похожие записи:
  • Как долго может проработать процессор?Как долго может проработать процессор?
  • Как включить Receive Side Scaling (RSS) на сетевом интерфейсеКак включить Receive Side Scaling (RSS) на сетевом интерфейсе
  • Как установить диск в сервер Dell Power Edge R740xd
  • Проверка совместимости компьютера с Windows 11, за минуту
  • Что такое частота обновления монитора? (Полное руководство)Что такое частота обновления монитора? (Полное руководство)
  • Не грузится сервер Dell PowerEdge R740

Процессоры, ядра и потоки. Топология систем

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Используемая далее терминология используется в документации процессорам Intel. Другие архитектуры могут иметь другие названия для похожих понятий. Там, где они мне известны, я буду их упоминать.

Цель статьи — показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, © в статье

Мой комментарий объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин — это «процессор».

В современном мире процессор — это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает, что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память — RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.

К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах — как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент — схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер, во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.

Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология — гипертреды или гиперпотоки, — Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT — это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния — регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня — это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии. Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков

В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это — частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение — здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре — уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x, y, z), где x — это число процессоров, y — число ядер в каждом процессоре, а z — число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией — устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) — ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая — два ядра, а третья — всего лишь два потока.

Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?

Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений — им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи [2]:

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к [2], в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID

Local APIC (advanced programmable interrupt controller) — это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) — для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше — только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX[31:0] возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей

Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два — внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX[5:0] (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня — гиперпоток, ядро или процессор, — в ECX[15:8].

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, — все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB — не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI [3, 4].

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep 'processor\|physical\ id\|siblings\|core\|cores\|apicid' processor : 0 physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 processor : 1 physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 1 initial apicid : 1 processor : 2 physical id : 0 siblings : 4 core id : 1 cpu cores : 2 apicid : 2 initial apicid : 2 processor : 3 physical id : 0 siblings : 4 core id : 1 cpu cores : 2 apicid : 3 initial apicid : 3 

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec:  0, 1, 2, 3, 4, 5, 6, 7  0, 1, 2, 3, 4, 5, 6, 7  0, 1 THREAD groupSMT group  2, 3 THREAD groupSMT group  4, 5 THREAD groupSMT group  6, 7 THREAD groupSMT group       

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Скрытый текст

Также их предоставляет консольная утилита Sysinternals Coreinfo и API вызов GetLogicalProcessorInformation.

Полная картина

Проиллюстрирую ещё раз отношения между понятиями «процессор», «ядро», «гиперпоток» и «логический процессор» на нескольких примерах.

Система (2, 2, 2)

Система (2, 4, 1)

Система (4, 1, 1)

Прочие вопросы

В этот раздел я вынес некоторые курьёзы, возникающие из-за многоуровневой организации логических процессоров.

Кэши

Как я уже упоминал, кэши в процессоре тоже образуют иерархию, и она довольно сильно связано с топологией ядер, однако не определяется ей однозначно. Для определения того, какие кэши для каких логических процессоров общие, а какие нет, используется вывод CPUID.4 и её подлистов.

Лицензирование

Некоторые программные продукты поставляются числом лицензий, определяемых количеством процессоров в системе, на которой они будут использоваться. Другие — числом ядер в системе. Наконец, для определения числа лицензий число процессоров может умножаться на дробный «core factor», зависящий от типа процессора!

Виртуализация

Системы виртуализации, способные моделировать многоядерные системы, могут назначить виртуальным процессорам внутри машины произвольную топологию, не совпадающую с конфигурацией реальной аппаратуры. Так, внутри хозяйской системы (1, 2, 2) некоторые известные системы виртуализации по умолчанию выносят все логические процессоры на верхний уровень, т.е. создают конфигурацию (4, 1, 1). В сочетании с особенностями лицензирования, зависящими от топологии, это может порождать забавные эффекты.

Спасибо за внимание!

Литература
  1. Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volumes 1–3, 2014. www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
  2. Shih Kuo. Intel® 64 Architecture Processor Topology Enumeration, 2012 — software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
  3. OSDevWiki. MADT. wiki.osdev.org/MADT
  4. OSDevWiki. Detecting CPU Topology. wiki.osdev.org/Detecting_CPU_Topology_%2880×86%29

Ядра или потоки: что важнее для процессора?

Ядра или потоки: что важнее для процессора?

В описании современных процессоров указаны количества ядер и потоков. Что обозначают эти цифры, на какие показатели следует ориентироваться при покупке процессора?

В спецификации каждого процессора обязательно присутствует информация о количестве ядер и потоков. Правила «чем больше, тем лучше», в этой ситуации никто не отменял, но давайте выясним, в каких задачах виртуальные ядра способны дать ощутимый прирост производительности, а в каких останутся бесполезными.

Зачем процессору несколько ядер?

Процессоры (CPU) – это вычислительный центр любого сервера, компьютера, планшета, смартфона и даже игровой консоли. Именно он принимает команды пользователя, вводимые в различных приложениях и программах, обрабатывает их и распределяет задачи между другими узлами системы – видеокартой, оперативной памятью, жестким или твердотельным диском.

Вот поэтому процессор – это мозговой центр любого сервера и платформы, отвечающий за его вычислительные способности и скорость работы.

Первые CPU были едиными устройствами, которые принимали команды и выполняли их в строгой очередности. Одно ядро позволяло выбирать процессор при покупке только по показателям частоты. А недостаток производительности на первых порах компенсировали созданием двух- и многопроцессорных конфигураций.

В таких сборках команды пользователя на ввод обрабатывал первый процессор, а остальные операции по возможности равномерно распределялись между остальными. Для сборки таких систем использовались материнские платы на 2 CPU или двухпроцессорные платы (конфигурации на несколько сокетов).

Следующим шагом производители создали многоядерную архитектуру, позволяющую на площади, казалось бы, небольшого микрочипа размещать несколько вычислительных центров, которые по сути являлись самостоятельными процессорами. Так в продаже появились двух-, четырех- и восьмиядерные устройства, которые обрабатывали сразу несколько потоков информации.

Позже американская корпорация Intel в линейке CPU Pentium внедрила техническую возможность выполнения одним ядром двух команд за такт, что стало началом новой эпохи в компьютерных технологиях – гиперпоточности процессоров. А сейчас специалисты компании активно работают над новой технологией реализации четырех потоков на одном ядре, и уже в ближайшее время подобные процессоры будут представлены публике.

Чем отличаются ядра и потоки

Ядро – это самостоятельный вычислительный блок в архитектуре процессора, способный выполнять линейную последовательность задач за определенный период времени. Если нагрузить одно ядро несколькими последовательностями задач, то оно будет попеременно переключаться между ними, обрабатывая по одной задаче из каждого потока. В масштабах системы это приводит к замедлению работы программ и сервисов.

Поток – это программно выделенная область в физическом ядре процессора. Такая виртуальная реализация позволяет разделять ресурсы ядра и работать параллельно с двумя разными последовательностями команд. Таким образом операционная система воспринимает поток, как отдельный вычислительный центр, следовательно, ресурс ядра используется более рационально, и скорость вычислений увеличивается.

Стоит ли ожидать удвоения производительности?

Виртуальное разделение вычислительной мощности процессора на потоки называется гиперпоточностью. На практике это не физическое увеличение количества ядер, следовательно, и вычислительный потенциал процессора остается постоянным.

Гиперпоточность – это инструмент, позволяющий процессору более оперативно выполнять команды операционной системы компьютера и распределять вычислительный ресурс.

Таким образом, удвоенное количество потоков по отношению к ядрам способно повысить эффективность процессора за счет одновременного выполнения нескольких задач каждым ядром. Но прирост, даже по заверениям одного из лидеров рынка в производстве процессоров Intel будет находиться в пределах 30%.

А вот об увеличении энергопотребления и чрезмерном нагреве волноваться не стоит. Так как виртуальное разделение выполнено на производстве, то компанией просчитаны все рабочие параметры, такие как мощность и TDP, указанные в спецификации.

Что выбирать: ядра или потоки?

Поскольку ядра – это физические «мозговые центры», занимающиеся вычислениями, то за общую производительность центрального процессора (ЦП) отвечают именно они. Поэтому количеством ядер, ну и еще частотой ЦП определяется его производительность.

Но и количество потоков также заслуживает внимания. Разберем на примере:

Двухъядерный CPU с двумя потокам нагружается операционной системой четырьмя параллельными последовательностями команд, например, от запущенных игр и программ. Команды так и останутся в четырех «очередях», и ядра будут попеременно производить вычисления из каждой. При этом производительность ядра зачастую избыточна для обработки одной команды. Поэтому часть вычислительного потенциала ядра, а значит и процессора останется в резерве.

Если же взять аналогичный процессор с двумя ядрами, но уже на четыре потока, то все четыре очереди будут задействованы одновременно, по максимуму загружая ядра. Следовательно, задачи будут решены быстрее, а простоя вычислительных мощностей удастся избежать.

На практике это дает нам возможность одновременно запускать несколько программ: работать с документами, слушать музыку, общаться в мессенджерах и выполнять поиск в браузере. При этом программы будут работать эффективно, быстро, без торможений и зависаний.

В производственных масштабах для комплектации рабочих станций или серверов также следует отдать предпочтение большему количеству потоков при равных числах ядер. За исключением особых случаев, таких как работа с 1С, когда решающую роль играет тактовая частота, и ряда других приложений, активно использующих TCP/IP стек. В этих случаях распараллеливание вызывает существенную задержку при обработке пакетов.

Таким образом, чем больше ядер будет в процессоре, тем выше его производительность и скорость выполнения различных задач. А удвоенное количество потоков позволяет повысить эффективность процессора и задействовать его технический потенциал на полную.

Заключение

Производительность процессора — это комплексная характеристика, зависящая не только от количества ядер, но и от способности ЦП эффективно распределять и обрабатывать данные. Современные технологии, такие как технология hyper threading от Intel, позволяют процессорам с меньшим количеством физических ядер увеличивать свою эффективность за счет создания виртуальных потоков, что особенно важно в задачах, требующих одновременной обработки большого количества данных.

Важно понимать, что наряду с количеством ядер и потоков, высокая тактовая частота также играет ключевую роль в определении общей производительности CPU. Процессоры, которые предлагают высокую тактовую частоту в сочетании с продвинутыми многоядерными архитектурами, как правило, обеспечивают лучшую производительность в широком спектре задач, которые включают как однопоточные, так и многопоточные приложения.

Выбирая между ядрами и потоками, важно рассматривать характеристики ЦП в контексте конкретных задач, которые вы планируете на нем выполнять. Процессоры линейки Intel Core, например, предлагают широкий диапазон конфигураций, оптимизированных как для игр, так и для профессионального использования, благодаря сочетанию мощных многоядерных архитектур и технологий, таких как hyper threading.

В итоге, при выборе между многоядерным процессоре и процессора, которая поддерживает технологии виртуализации потоков, рекомендуется учитывать специфику ваших приложений и рабочих нагрузок. Обе технологии имеют свои преимущества, и оптимальный выбор зависит от требований к производительности и обработке данных в ваших конкретных задачах.

Вопросы и ответы

Сколько ядер нужно для современных игр?

Большинство современных игр оптимизированы для работы минимум на 4 ядра. Однако для игр последнего поколения и максимальных настроек графики рекомендуется иметь процессор с 6-8 ядрами.

Улучшит ли добавление потоков производительность всех приложений?

Добавление потоков улучшает производительность в многозадачных средах и приложениях, оптимизированных для работы с несколькими потоками. Однако для программ, не поддерживающих многопоточность, увеличение числа потоков не даст заметного прироста производительности.

В чем разница между физическими и виртуальными ядрами?

Физическое ядро — это реальный вычислительный блок процессора. Виртуальное ядро (или поток) создаётся за счёт технологии гиперпоточности, позволяя одному физическому ядру обрабатывать несколько потоков данных одновременно, что улучшает многозадачность.

Как количество ядер и потоков влияет на потребление энергии и тепловыделение?

Увеличение количества ядер и потоков может привести к повышению потребления энергии и тепловыделения, но современные технологии производства и управления энергопотреблением способны минимизировать эти эффекты.

Могу ли я увеличить количество потоков на своём процессоре?

Количество потоков определяется архитектурой процессора и не может быть изменено программно. Выбор процессора с большим количеством потоков — это вопрос покупки соответствующего оборудования.

  • Все посты
  • HDD диски (51)
  • KVM-оборудование (2)
  • Powerline-адаптеры (2)
  • SSD диски (106)
  • USB-носители (4)
  • USB-хабы (3)
  • Батареи к ИБП (4)
  • Безопасность (3)
  • Беспроводные USB адаптеры (2)
  • Беспроводные роутеры (26)
  • Блоки питания (15)
  • Бумага (1)
  • Веб-камеры (2)
  • Вентиляторы корпусные (4)
  • Видеокарты (56)
  • Видеонаблюдение (7)
  • Внешние диски (4)
  • Гарнитуры (2)
  • Графические планшеты (2)
  • Дисковые полки (5)
  • Док-станции (1)
  • Звуковые карты (4)
  • ИБП (27)
  • Инструменты (1)
  • Кабели и патч-корды (10)
  • Картриджи (1)
  • Карты памяти (7)
  • Клавиатуры (8)
  • Колонки (3)
  • Коммутаторы (19)
  • Комплекты (клавиатура и мышь) (2)
  • Компьютерная периферия (2)
  • Компьютерные кресла (2)
  • Компьютеры (56)
  • Контроллеры и адаптеры (11)
  • Корпусы (15)
  • Ленточные носители (3)
  • Маршрутизаторы (2)
  • Материнские платы (21)
  • Модули памяти (23)
  • Мониторы (44)
  • Моноблоки (8)
  • МФУ (6)
  • Мыши (9)
  • Ноутбуки (44)
  • Общая справка (105)
  • Оптические приводы (2)
  • Охлаждение процессорное (17)
  • Панели (1)
  • Планшеты (3)
  • Плоттеры (1)
  • Портативные аккумуляторы (1)
  • Принтеры (7)
  • Программное обеспечение (85)
  • Процессоры (55)
  • Рабочие станции (8)
  • Распределение питания (2)
  • Ретрансляторы Wi-Fi (3)
  • Серверы (91)
  • Сетевые карты (5)
  • Сетевые фильтры (2)
  • Сканеры (2)
  • СХД (15)
  • Телевизоры (1)
  • Телекоммуникационные шкафы (9)
  • Телефония (4)
  • Тонкие клиенты (2)
  • Трансиверы (5)
  • Умный дом (2)

Также вас может заинтересовать

EPYC vs Ryzen Threadripper: чем отличаются многоядерные CPU?

EPYC vs Ryzen Threadripper: чем отличаются многоядерные CPU?

Выясняем принципиальные отличия многоядерных процессоров для сборки ПК и сервера.

Обзор процессоров AMD Ryzen 5000 серии

Обзор процессоров AMD Ryzen 5000 серии

Процессор от AMD — какие характеристики и высока ли производительность

Процессоры Intel Core 11 поколения

Процессоры Intel Core 11 поколения

Невероятная производительность для пользовательского сегмента

Как выбрать процессор AMD

Как выбрать процессор AMD

При выборе процессора перед покупателем встает вопрос: что выбрать — AMD или Intel? В этой статье мы разберем первую часть этого вопроса — рассмотрим ассортимент процессоров AMD

Выбираем мощный процессор для компьютера: AMD или Intel

Выбираем мощный процессор для компьютера: AMD или Intel

Выбираем процессор среди самых дорогих и производительных моделей

Какие бюджетные процессоры лучше: Intel или AMD?

Какие бюджетные процессоры лучше: Intel или AMD?

Сравниваем бюджетные модели AMD и Intel и выбираем лучшее решение под разный бюджет.

AMD EPYC 7003: Новое слово в серверной производительности

AMD EPYC 7003: Новое слово в серверной производительности

Линейка северных процессоров AMD EPYC 7003

Автоматическая регулировка частот процессоров: что это такое и для чего нужно

Автоматическая регулировка частот процессоров: что это такое и для чего нужно

Зачем нужна регулировка частот и каким образом она реализована в современных процессорах Intel и AMD

Как выбрать процессор Intel для ПК

Как выбрать процессор Intel для ПК

При выборе процессора перед покупателем встает вопрос: что выбрать — AMD или Intel? В этой статье мы разберем вторую часть этого вопроса — рассмотрим ассортимент процессоров Intel.

Процессоры AMD Ryzen 4000 Pro: революция в производительности

Процессоры AMD Ryzen 4000 Pro: революция в производительности

Производительная архитектура Zen2, мощная интегрированная графика и ограниченный доступ для розничных покупателей.

В чем разница между процессор и ядром в смартфоне?

Объясните пожалуйста доступным языком. В чем разница между процессор и ядром в смартфоне ?. Например смартфон имеет процессор Snapdragon 650 и ядро Cortex-A53 и Cortex-A72, хотя второе пишут где как, где ядро где процессор где CPU. Вот конкретно вопрос что такое процессор и что такое ядра процессора и приведите пример и как в данном случае правильно называется Cortex-A53 и Cortex-A72?

  • Вопрос задан более трёх лет назад
  • 1336 просмотров

Комментировать
Решения вопроса 2
Василий @elektrovenick

Процессор, хотя точнее в мобильном мире это СОК/SOC (System On Chip) — набор технологий, собранных воедино, которые решают всевозможные задачи. В чипе есть проц, видюха и многое-многое другое.
Процессор (определение загугли) содержит в себе ядра.
Ядро — микропроцессор в процессоре, то есть если достать все ядра кроме одного, всё будет пахать.
Есть разные ядра, приведённые (А53, А72) это типы ядер, что вместе называется биглитл. А53 — энергоэффективные ядра, А72 — высокопроизводительные. В 650 снапе 4 ядра А53, 2 ядра А72.
Грубо говоря, ядро процессора это как у тебя рука. Руки разные могут быть, но они все выполняют заданные инструкции. Больше рук (количество ядер), больше их размер (тип ядра), выше их скорость (тактовая частота) — быстрее выполняешь задания.
Если немного иначе, процессор — голова, ядро — мозг. Больше мОзгов — больше задач, больше сложных задач и всё это быстрее ты сможешь решать.
Я уже хз, как ещё проще объяснить))

Ответ написан более трёх лет назад
Комментировать
Нравится 3 Комментировать

Если просто — то эти кортекы просто размещены на одной микросхеме. Эта микросхема и есть процессор или CPU.

Дополнительно там предусмотрены механизмы отключения питания от части микросхемы (от одного из кортексов и даже от части кортекса).

Ядра же — это части CPU, но, теоретически — каждое ядро вполне функционально, является практически процессором по своим возможностям.

То есть получается «маленькие процессоры внутри процессора»

Более того — каждый из кортекстов тоже содержит ядра. Которые тоже являются процессорами.
Матрешка.

Ответ написан более трёх лет назад
Комментировать
Нравится Комментировать
Ответы на вопрос 1

Griboks

Раньше процессор просто вычислял что-то по алгоритму. Когда алгоритмы усложнялись, улучшался и процессор. Вплоть до 21 века. Далее процессоры было уже невозможно оптимально улучшить. Придумали совместить несколько штук, что бы они работали параллельно. Так эти «штуки» стали ядрами, а контроллер управления и распараллеливания — процессором. Имхо)

Ответ написан более трёх лет назад
Комментировать
Нравится 2 Комментировать
Ваш ответ на вопрос

Войдите, чтобы написать ответ

javascript

  • JavaScript
  • +1 ещё

Можно ли с помощью JS узнать наличие каких-либо датчиков в смартфоне или каких-то иных их отличительных особенностей?

  • 2 подписчика
  • вчера
  • 154 просмотра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *