Сколько транзисторов в смартфоне
Перейти к содержимому

Сколько транзисторов в смартфоне

  • автор:

Производительность смартфонов продолжает расти, но актуален ли закон Мура?

Немногим известен закон Мура. Это опытное наблюдение Гордона Мура (один из основателей Intel), согласно которому количество транзисторов на кристалле интегральной схемы удваивается каждые 24 месяца. Другими словами, производительность компьютеров каждые два года по закону Мура должна увеличиваться в два раза. Но при этом в 2007 году Мур заявил, что его закон скоро перестанет действовать из-за «атомарной природы вещества и ограничения скорости света». Однако нас всё же интересует, актуален ли закон Мура для мобильных устройств?

Производительность смартфонов продолжает расти, но актуален ли закон Мура? Фото.

Наши коллеги из androidauthority опирались на изначальный закон Мура от 1965 года, согласно которому производительность компьютеров удваивается каждый год. Это не совсем корректная оценка, поэтому мы будем отталкиваться от закона Мура 1975 года.

Производительность смартфонов продолжает расти, но актуален ли закон Мура? Фото.

Если сравнить Galaxy S5 и S7, разница между девайсами составляет два года, а производительность увеличилась ровно в 2 раза. Между S6 и S8 также два года разницы, производительность увеличилась почти в 2 раза. Другими словами, закон Мура работает.

Так выглядит график увеличения производительности Galaxy S5, S6, S7 и S8 (результаты получены с помощью Geekbench):

Производительность смартфонов продолжает расти, но актуален ли закон Мура? Фото.

Теперь давайте поймем, как работают процессоры. Начать стоит с того, что не всё зависит от тактовой частоты. Тактовая частота указывает лишь на то, как быстро процессор способен обработать каждую инструкцию, а «ГГц» — единица измерения скорости обработки (1 цикл в секунду равен 1 Герцу). Таким образом, процессор с тактовой частотой 2 ГГц способен производить 2 млрд циклов в секунду.

Производительность смартфонов продолжает расти, но актуален ли закон Мура? Фото.

Можно также использовать параллелизм на уровне команд (ILP), что позволит распараллелить обработку команд. Это приведет к повышению тактовой частоты процессора. При этом стоит понимать, что некоторые инструкции нужно обрабатывать только последовательно.

Теперь рассмотрим то, о чем говорил Мур — транзисторы кристалла. Процессор состоит из транзисторов. Чем их больше, тем лучше. Вы наверняка замечали фразы «10-нм техпроцесс», «10 nm», «10 нм». Цифра «10» — это размер одного транзистора в нанометрах. Транзисторы имеют два состояния (0 и 1), при которых способны блокировать и пропускать ток, речь идет о двоичной системе. И чем они меньше, тем больше транзисторов можно разместить на кристалле.

Snapdragon 835 с 10-нм техпроцессом вместил в себя 3 миллиарда транзисторов. Мозг человека имеет 100 млрд нейронов, а людей на планете 7,4 млрд. Samsung и TSMC в настоящее время работают над чипами с 7-нм техпроцессом, при этом TSMC уже ведет разработку 5- и 3-нм процессоров. При достижении нижнего порога и перехода к другим единицам станет актуальной фраза Мура об ограничениях в природе, и тогда рост производительности будет не таким большим, как сейчас.

Возможно, в будущем человечество уйдет от транзисторов к чему-то более эффективному, но это уже совершенно иные технологии.

Производительность смартфонов продолжает расти, но актуален ли закон Мура? Фото.

Приведем еще один пример. iPhone 5S, оснащенный процессором Apple A7, имеет всего 1 млрд транзисторов, а это, к слову, одна треть от числа транзисторов в Snapdragon 835. В iPhone 6 число транзисторов увеличилось вдвое, хотя на практике производительность увеличилась лишь на 10-20 процентов. Поэтому увеличение числа транзисторов напрямую не влияет на увеличение производительности смартфона, так как компании могут использовать увеличение числа транзисторов для других целей, которые напрямую не влияют на производительность. В настоящее время процессорами с наибольшим числом транзисторов являются Apple A11 (4,3 млрд транзисторов) и Kirin 970 (5,5 млрд транзисторов).

Стоит упомянуть и о законе масштабирования Деннарда: «Чем меньше транзистор по размеру, тем быстрее он может переключаться; чем быстрее транзистор может переключаться, тем быстрее работает процессор». К тому же закон также гласит о том, что уменьшая размер транзистора, мы не уменьшаем его тепловыделение. Поэтому увеличение числа транзисторов приводит к нагреву. Так, с 2006 года закон масштабирования перестал работать из-за высокого нагрева процессоров, это ограничение нельзя обойти из-за отсутствия эффективных систем охлаждения, поэтому производители всё чаще делают ставку на количество ядер.

Оставить комментарий в Telegram. Поделитесь мнением в чате читателей Androidinsider.ru

Теги

  • Мобильные процессоры
  • Мобильные технологии
  • Новичкам в Android

Что означает «7 нм техпроцесс»?

В сентябре Apple, как всегда, выпустила новое поколение iPhone. На этот раз сердцем смартфонов iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max стал новый процессор от Apple A13 Bionic, подробный обзор которого AppleInsider.ru уже выпустил. Этот процессор, как и его предшественник A12 Bionic, выполнен по 7-нанометровому техпроцессу, о чём упоминают все журналисты. Но что такое этот «техпроцесс»? Чем 7-нанометровый лучше 10-нанометрового и когда будет 5-нанометровый? Давайте разберёмся.

Что означает «7 нм техпроцесс»? Производство процессоров похоже на лабораторию из фантастического фильма. Фото.

Производство процессоров похоже на лабораторию из фантастического фильма

Что такое «7 нм техпроцесс»?

Если говорить очень упрощённо, то процессор — это миллиарды крошечных транзисторов и электрических затворов, которые включаются и выключаются при выполнении операций. «7 нм» — это размер этих транзисторов в нанометрах. Для понимания масштабов стоит напомнить, что в одном миллиметре миллион нанометров, а человеческий волос толщиной 80000 — 110000 нанометров. Транзистором, напомню, называют радиоэлектронный компонент из полупроводника (материал, у которого удельная проводимость меняется от воздействия температуры, различных излучений и прочего), который от небольшого входного сигнала управляет значительным током в выходной цепи. Он используется для усиления, генерирования, коммутации и преобразования электрических сигналов. Сейчас транзистор является основой схемотехники подавляющего большинства электронных компонентов и интегральных микросхем. Размер транзистора полезно знать специалистам для оценки производительности конкретного процессора, ведь чем меньше транзистор, тем меньше требуется энергии для его работы.

Что такое «7 нм техпроцесс»? Процессор A7, стоявший в iPhone 5S, производился по 28-нанометровому техпроцессу. Фото.

Процессор A7, стоявший в iPhone 5S, производился по 28-нанометровому техпроцессу

При производстве полупроводниковых интегральных микросхем применяется фотолитография (нанесение материала на поверхности микросхемы при участии света) и литография (нанесение материала с помощью потока электронов, излучаемого катодом вакуумной трубки). Разрешающая способность в микрометрах и нанометрах оборудования для изготовления интегральных микросхем (так называемые «проектные нормы») и определяет размер транзистора, а с ним и название применяемого конкретного технологического процесса.

Читайте далее: В iPhone 11 появится новый сопроцессор для фото- и видеосъёмки

Какие бывают техпроцессы?

Ранние техпроцессы, до стандартизации NTRS (National Technology Roadmap for Semiconductors) и ITRS, обозначались «ХХ мкм» (мкм — микрометр), где ХХ обозначало техническое разрешение литографического оборудования. В 1970-х существовало несколько техпроцессов, в частности 10, 8, 6, 4, 3, 2 мкм. В среднем, каждые три года происходило уменьшение шага с коэффициентом 0,7.

За сорок лет развития технологий разрешение оборудования достигло значений в десятках нанометров: 32 нм, 28 нм, 22 нм, 20 нм, 16 нм, 14 нм. Если говорить про iPhone, то в пока ещё актуальном iPhone 8 используется процессор А11 Bionic, изготовленный по 10-нанометровому техпроцессу. Серийный выпуск продукции по нему начался в 2016 году тайваньской компанией TSMC, которая изготавливает процессоры и для iPhone 11.

Какие бывают техпроцессы? TSMC — тайваньская компания по производству микроэлектроники, поставляющая Apple процессоры. Фото.

TSMC — тайваньская компания по производству микроэлектроники, поставляющая Apple процессоры

16 апреля 2019 года компания TSMC анонсировала освоение 6-нанометрового технологического процесса, что позволяет повысить плотность упаковки элементов микросхем на 18%. Данный техпроцесс является более дешевой альтернативой 5-нанометровому техпроцессу, также позволяет легко масштабировать изделия, разработанные для 7 нм.

В первой половине 2019 года всё та же компания TSMC начала опытное производство чипов по 5-нм техпроцессу. Переход на эту технологию позволяет повысить плотность упаковки электронных компонентов по сравнению с 7-нанометровым техпроцессом на 80% и повысить быстродействие на 15%. Ожидается, что IPhone 2020 года получит процессор, созданный по новому техпроцессу, а не на втором поколении 7-нанометрового техпроцесса.

В начале 2018 года исследовательский центр imec в Бельгии и компания Cadence Design Systems создали технологию и выпустили первые пробные образцы микропроцессоров по технологии 3 нм. Судя по обычным темпах внедрения новых техпроцессов в серийное производство, ждать процессоров, изготовленных по 3-нанометровому техпроцессу, стоит не раньше 2023 года. Хотя Samsung уже к 2021 году намерена начать производство 3-нанометровой продукции с использованием технологии GAAFET, разработанной компанией IBM.

Читайте далее: Процессоры для iPhone начнут производить по новой технологии

Что даёт 7 нм техпроцесс?

И вот мы пришли к самой интересной части. Что же даёт пользователю уменьшение размера транзисторов в процессоре его устройства?

Уменьшение транзисторов имеет огромное значение для маломощных чипов мобильных устройств и ноутбуков. Если сравнить схематично одинаковые процессоры, но изготовленные по 14-нанометровому и 7-нанометровому техпроцессу, то второй будет на 25% производительней при той же затраченной энергии. Или вы можете получить одинаковую производительность, но второй будет в два раза энергоэффективнее, что позволит ещё дольше читать блог Hi-News.ru на Яндекс.Дзен.

Что даёт 7 нм техпроцесс? iPhone 11 с процессором A13 Bionic, изготовленном на 2 втором поколении 7-нанометрового техпроцесса. Фото.

iPhone 11 с процессором A13 Bionic, изготовленном на 2 втором поколении 7-нанометрового техпроцесса

Одним словом, внедрение более современных технологических процессов даст нам увеличение времени работы iPhone и iPad от батареи при одинаковой производительности (следовательно, не надо раздувать размеры устройств для больших аккумуляторов), а также гораздо более мощные процессоры для MacBook. Мы уже видели, как чип A12X от Apple обходил некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри iPad Pro (2018).

Чтобы всегда быть в курсе современных технологий, обязательно подпишитесь на Telegram-канал AppleInsider.ru.

Процессоры для смартфонов: какие лучше и чем отличаются

Покупка нового телефона сопровождается рядом сложностей при выборе. Один из вопросов, который необходимо решить — это какой процессор лучше для смартфона? Именно чипсет или так называемый SoC влияет на производительность, автономность и многозадачность устройства.

По размеру процессор Snapdragon 888 уступает даже карточке памяти micro SD. Источник: gadgetmatch.com

Есть несколько основных производителей процессоров, среди которых Qualcomm, Apple, Samsung и Mediatek. Примечательно, что корейский производитель Samsung оснащает свои флагманы и сторонними чипсетами Snapdragon от Qualcomm, и процессорами собственного производства Exynos. Чем между собой отличаются чипсеты разных брендов и модификаций, мы сейчас выясним.

Количество ядер процессора

Процессор для смартфона называют также однокристальной системой. Он представляет собой электронную схему, выполняющую функции целого устройства и размещенная на общей интегральной плате. В технических параметрах каждого SoC указывают количество его ядер. Каждое из них выполняет определённый поток команд. Чем ядер больше, тем лучше чипсет справляется с многопоточностью и тем он производительнее.

Почти все современные процессоры для смартфонов состоят из восьми ядер. При этом не все восемь ядер процессора имеют равную производительность. Компании, выпускающие однокристальные системы, устанавливают несколько кластеров — один, два или три. Они задействуются при разных задачах:

  • Слабые. К таким относят просмотр видео, веб-сёрфинг и телефонные разговоры.
  • Обычные. Использование камеры для съёмки фото или видео.
  • Производительные. Обработка видео, игры, работа с нейросетями.

Разделение на кластеры требуется для повышения энергоэффективности. Чем выше частота работы процессора, тем быстрее садится батарея. Соответственно, для решения слабых задач используются менее производительные, но более энергоэффективные ядра.

Наиболее распространены двухкластерные системы. В одном кластере обычно содержатся более производительные ядра, а во втором менее мощные, но энергоэффективные. Подобное разделение позволяет смартфону уверенно справляться с поставлеными задачами и экономить заряд батареи — в зависимости от ситуации подключаются ядра из определенного кластера.

Частота работы процессора

Из-за того, что почти все процессоры для смартфонов 2021 года имеют по восемь ядер, ключевым параметром, влияющим на их производительность, является частота. Она определяет, сколько импульсов чипсет совершает за единицу времени в процессе работы. Чем выше частота, тем больше операций выполняет гаджет. При этом есть логичная закономерность — более производительные чипсеты быстрее разряжают аккумулятор.

Более энергоэффективными являются смартфоны, процессоры которых имеют ядра разного класса. Также они не всегда работают на максимальной частоте. Она может подстраиваться под текущие задачи. Например, при веб-сёрфинге чипсет может работать на частоте 200-300 МГц, а в играх возрастать до 2,5 ГГц и более, в зависимости от мощности SoC.

С тыльной стороны чипсет смартфона похож на процессор для ноутбука или ПК. Источник: tadviser.ru

Например, в 2015-2016 годах использовались чипсеты Snapdragon 415, Snapdragon 425 и Snapdragon 435, которые работали на частоте 1,4 ГГц. В 2021-2022 годах во флагманы устанавливают топовые процессоры Snapdragon 888+ и Snapdragon 8 Gen 1, рабочая частота которых достигает 3 ГГц.

Техпроцесс или на что влияют нанометры

При сравнении процессоров смартфонов нужно учитывать не только частоту и количество ядер, но и техпроцесс, по которому изготовлен чипсет. Его определяют нанометрами, а в технических характеристиках однокристальной системы этот параметр обозначают как «Нм». Чем современнее чипсет, тем меньшая цифра стоит перед этой маркировкой, то есть процессор 7 Нм гораздо эффективнее, чем 14 Нм.

Числовым значением обозначают размер каждого транзистора. Чем он компактнее, тем больше их удастся разместить на одинаковой площади, и тем выше будет общая производительность смартфона. При этом маленькие транзисторы меньше нагреваются и экономнее расходуют заряд батареи под нагрузкой.

Лучшие процессоры для смартфонов 2021-2022 годов выпуска созданы по техпроцессу 5-7 Нм, а бюджетники и среднебюджетники имеют SoC на 8-12 Нм. Устройства с чипсетами более 15 Нм вообще лучше не покупать — с технической точки зрения они уже устарели.

Лучшие производители процессоров для смартфонов

Если изучить рынок мобильных устройств, станет понятно, что в большинстве из них установлены чипсеты пяти производителей.

Qualcomm

Считаются одними из лучших процессоров для смартфонов на Андроид. Производитель поддерживает связь с разработчиками программного обеспечения, поэтому софт для мобильных гаджетов изначально адаптирован именно под чипсеты Snapdragon от Qualcomm. Например, во флагмане Galaxy Z Fold3 от Samsung стоит топовый Snapdragon 888, а в Honor 50 Lite установлен слабенький Snapdragon 662.

MediaTek

Если Qualcomm славится флагманскими процессорами, то Mediatek известен бюджетными однокристальными системами. В закупке они обходятся примерно на 30% дешевле чипов Qualcomm.

Последними процессорами Mediatek пытается переломить ситуацию. Свежее поколение чипсетов MTK Dimensity 1100 успешно конкурирует с системами Qualcomm. Для этого разработчики прилагают усилия для модернизации производства.

Процессоры MediaTek имеют соответствующую маркировку на внешней поверхности. Источник: min.news

MediaTek Dimensity 1100 установлен Xiaomi Poco X3 GT, а топовый Dimensity 1200 встречается во флагманах OnePlus Nord 2 5G и Xiaomi 11T.

Apple

Производительность процессоров смартфонов Apple всегда была на высоте. Каждый год компания выпускает новое поколение чипсетов, устанавливая их в свои новинки — iPhone и iPad. В устройствах других брендов процессоры Apple не встречаются. С каждым поколением производитель совершенствует техпроцесс, уменьшая нанометры, а также повышает частоту работы ядер.

Samsung

Корейской компании принадлежит линейка чипсетов Exynos, которые незначительно уступают процессорам Qualcomm в производительности и энергоэффективности. Зато последние модели этих чипов имеют встроенный нейропроцессор для обработки фото в процессе съёмки. Благодаря этой технологии снимки со смартфонов Samsung по качеству автоматической постобработки часто превосходят конкурентов на других процессорах при схожих модулях камер.

Давайте рассмотрим на примере Samsung Galaxy Note 20 Ultra. На российский рынок поставляются модели на процессоре Exynos, а на американский и азиатский — на Snapdragon. Первые при сравнении качества снимков выделяются более высоким качеством.

HiSilicon

Эти процессоры принадлежат компании Huawei, для гаджетов которой они и предназначены. Также эти чипы устанавливают в устройствах Honor. Процессоры HiSilicon не отличаются рекордной производительностью, но славятся энергоэффективностью — очень экономно расходуют заряд батареи. Например, в смартфоне Huawei Nova 8 установлен аккумулятор на 3800 мА·ч, что по современным меркам немного. Благодаря процессору HiSilicon Kirin 820 заряда батареи хватает на два дня использования гаджета при средних нагрузках.

Топ процессоров 2021-2022 года

Напоследок рассмотрим небольшой рейтинг процессоров для смартфонов, в который вошли не самые свежие, но наиболее популярные чипсеты для устройств под управлением Android и iOS.

Bionic

A14 Bionic — это не самый мощный чип от Apple. Его выпустили осенью 2020 года, а создан он по 5 Нм техпроцессу. У него 6 ядер и частота до 3100 МГц. В него встроен графический ускоритель Apple GPU с 4 вычислительными блоками. Устанавливали его в iPhone 12 и iPad Air 4.

В тестах производительности A15 Bionic превосходит прямого конкурента Snapdragon 888 на 3-5%. Источник: iphoneislam.com

В 2021 году на смену этому чипу пришёл A15 Bionic. Он тоже создан по техпроцессу 5 Нм, но частоту повысили до 3223 МГц. Количество вычислительных блоков GPU тоже увеличили — теперь их 5 штук. Чипсет встречается во всех версиях iPhone 13.

Snapdragon

В 2020 году Qualcomm представила флагманский чип Snapdragon 888 на 5 Нм, состоящий из 8 ядер и работающий на частоте до 2,84 ГГц МГц. Он работает с графическим ядром Kryo 680, который справляется с самыми требовательными играми. Во втором квартале 2021 года процессор разогнали до 2,995 ГГц, а остальные параметры остались прежними.

Позже в том же году инженеры Qualcomm представили новую линейку флагманских чипсетов — Snapdragon 8 Gen 1. Процессор создан по техпроцессу 4 Нм и имеет 8 ядер. Максимальная частота — 3 ГГц. Работает вкупе с графическим ускорителем Adreno 730, который также разработан Qualcomm и отвечает за обработку графики. Особенно его производительность важна в играх. Если нужен смартфон с мощным процессором в 2022 году, стоит присмотреться к гаджетам с чипом Snapdragon 8 Gen 1 на борту. Среди них Realme GT 2 Pro, Xiaomi 12 и 12 Pro, OnePlus 10 Pro и другие.

Exynos

Exynos 2100 — это самый свежий на сегодняшний день чип от Samsung, созданный на 5 Нм техпроцессе и состоящий из 8 ядер с максимальной частотой 2,9 ГГц. Работает с графическим ядром Arm Mali-G78 и устанавливается в такие смартфоны корейского производителя, как Galaxy S21, S21+ и S21 Ultra. По эффективности в требовательных играх этот чип уступает конкуренту Snapdragon 888 на 10% при идентичных настройках графики. Это приведет к небольшой просадке FPS, но с учетом большого запаса мощности чипсета это будет почти незаметно.

Преимущество Exynos 2100 в наличии дополнительных ядер для обработки фото и позиционирования смартфона в пространстве. Автоматическая постобработка позволяет ИИ улучшать качество создаваемых снимков, а лучшее позиционирование обеспечивает более точную и быструю навигацию.

Kirin

Kirin 9000 по производительности не отстаёт от флагманского Snapdragon 888, но нуждается в более мощном охлаждении под нагрузкой. В повседневном режиме он заслуживает звание одного из самых энергоэффективных чипов. Работает на частоте до 3,13 ГГц и создан на 5 Нм техпроцессе. Чипсет устанавливают в смартфоны Huawei Mate 40 и Huawei 50.

Dimensity

Компания MTK выпускает флагманские чипсеты Dimensity 1100, которые почти не отстают от конкурентов Snapdragon и Exynos. Это тоже 8-ядерный процессор с частотой до 2,6 ГГц. Создан на техпроцессе 6 Нм, но по оптимизации превосходит чипы от HiSilicon, разработанные по той же технологии. Всё дело в более удачном сочетании производительности и энергоэффективности.

Устройство с Dimensity 1100 подойдёт любителям мобильных игр, не желающим сильно тратиться на смартфон с процессором Snapdragon. Процессор устанавливают в Vivo S10 и S12, Xiaomi Poco X3 GT и Realme Q3 Pro.

Сколько примерно транзисторов в современном мобильном телефоне? (и в микросхемах тоже)

Как правило современная полупроводниковая техника состоит из небольшого количества микросхем. В состав микросхемы входит кристалл полупроводникового металла, разделенный внутри для образования элементов схемы (транзисторы, резисторы, конденсаторы) . Сколько этого барохла в одной микросхеме мало кто знает.

Более реально — это два-три транзистора в системе зарядки аккумулятора и столько-же в усилителе для динамика. Все остальное в составе микросхем.

Влад ТкачГуру (3969) 5 лет назад

В системе зарядки аккумулятора помимо транзисторов стоят микросхемы стабилизаторов и драйвера питания. Только на контроле питания работает около сотни деталей минимум. В усилителях звука тоже порядка сотни деталей. Плюс всяческие преобразователи, контроллеры, приемо-передатчики частот вай-фай, блю-туз, если две симки, то оба канала сразу работают. Это еще пара тысяч транзисторов. В центральном процессоре с его несколькими ядрами и периферии еще наберется пара — тройка миллионов транзисторов. В контроллере дисплея с тачподом тоже немало. Но самая прикольная штука — память! На один бит нужно четыре! транзистора, то есть на один байт нужно 32 транзистора. А Сколько нужно на один Гигабайт? 32 миллиарда? А если память в 16-32-64 гиг? И в самом модуле памяти есть контроллер чтения-записи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *